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ECON 4130 
HG revised Oct 11 
 
 

Lecture Notes to Rice Chapter 8 
 
On how to handle inference in models with more than one unknown parameter when the 
limit distribution for the estimators is multivariate normal. 
 

0      Introduction - summary of one-parameter (asymptotic) inference 
based on estimators that are asymptotically normally distributed. 

 
Let θ  be a parameter of interest, the true value of which being unknown, in an 
econometric model. We wish to perform inference on θ  based on a data set. Let ˆ

n̂θ θ=  
be an estimator of θ  based on n observations or n observation vectors. Inference on θ  
based on the exact distribution of θ̂  is only possible in some situations. More often than 
not we need to resort to approximate methods - e.g., asymptotic methods for large or 
moderately large samples or simulation techniques (e.g. bootstrap) in small or moderately 
large samples. 
 
Very often (e.g. in most cases of mle, mme, ols, gls, etc estimators  for cross-section data 
and quite often for panel- and time series data as well) we have from theory some 
theorem that says 
 

(0-1) 
ˆ

~ (0,1)
D

n
n

Z n Z N
b

θ θ

→∞

−
= →  

where 0b >  is some (usually unknown) constant. Basically this is all we need. For a 
given “large” n, we interpret (0-1) as 
 

(0-2) 
2approximately

ˆ ~ ( , )bN
n

θ θ  

 

where the expression 
2b

n
 is often called the “asymptotic variance” of θ̂  (the precise sense 

of which is given in (0-1)), and the square root is called  the “(asymptotic) standard 
error”, SE, 
 

(0-3) ˆSE( ) b
n

θ =   
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Now, we cannot use (0-1) or (0-2) directly for inference when b is unknown. The only 
thing we need in order to deal with this problem, however, is a consistent estimator for b. 
So let b̂  be a consistent estimator for b. We then get from Slutsky’s lemma (explain how) 
that 
 

(0-4) 
ˆ

~ (0,1)ˆ

D

n
n

U n Z N
b

θ θ

→∞

−
= →   

 
which we, for a given “large” n, may interpret as  
 

(0-5) 
2approximately ˆˆ ~ ( , )bN

n
θ θ  

 
Note that the b̂  in the last expression can be understood as the observed value of b̂  (i.e., 
the estimate). In other words, for given “large” n we proceed as if the (asymptotic) 
standard error of θ̂  is known and given by  
 

(0-6) 
ˆˆ( ) bSE
n

θ =      (where b̂  is the estimate and not the estimator.) 

 
(This is the way Stata and other packages usually use the concept “standard error”.) 
 
The basis for inference can now be stated as:  
 
 

For given “large” n 
 

(0-7) 
approximatelyˆ ˆ

~ (0,1)ˆ ˆSE( )nU n N
b

θ θ θ θ
θ

− −
= =  

 
where b̂  is a consistent estimate of b. 

 
 
 
Exercise 1.    Identify ˆ  and  b b  in the following three situations: 
 
 i) ˆ ˆ~ binomial( , ), ,X n p p p X nθ θ= = =  
 
 ii) ˆ ˆ~ poisson( ), , ,X t n t X tλ θ λ θ λ= = = =  
 
 iii) 1 2, , , ~nX X X iid  with 2 ˆ ˆ( ) , var( ) ,i iE X X Xµ θ σ θ µ= = = = =  
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From (0-7) we can now construct confidence intervals (CI) for θ , test hypotheses about 
θ , calculate p-values etc.: 
 
Approximate 1 α−  confidence interval for θ : 
  
An approximate 1 α−  CI for  θ  is obtained directly from nU  in (0-7): 
 
Let pz be the upper p-point (quantile) in N(0, 1), i.e., ( )pP Z z p> = . Then: 
 

( )

2 2 2 2

2 2

2 2

ˆ
1 ( ) ( )ˆ

ˆ ˆˆ ˆ       

ˆ ˆ ˆ ˆ       SE( ) SE( )

nP z U z P z n z
b

b bP z z
n n

P z z

α α α α

α α

α α

θ θα

θ θ θ

θ θ θ θ θ

−
− ≈ − ≤ ≤ = − ≤ ≤ =

 
= − ≤ ≤ + =  

 

= − ≤ ≤ +

 

 
Hence an approximate 1 α−  CI for  θ  is  
 

(0-8) 2
ˆ ˆSE( )zαθ θ±   or  2

ˆˆ bz
nαθ ±  

 
Approximate α -level tests for θ : 
 
Consider the three following test problems in terms of null- and alternative hypotheses:` 
 
 

Problem 0H  1H  
1 0θ θ≤  0θ θ>  
2 0θ θ≥  0θ θ<  
3 0θ θ=  0θ θ≠  

 
where 0θ  is a known hypothetical value. We can use the same test statistic for all three 
problems 
 

(0-9) 0 0
ˆ ˆ

ˆ ˆSE( )nW n
b

θ θ θ θ
θ

− −
= =  
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Notice the difference between nU and nW :   
• nU is a non observable rv (since θ  is unknown) that has the same distribution 

( (0,1)N≈ ) no matter if 0H  is true or false. 
• nW  is an observable (its value can be calculated from the data) and its distribution 

is only (0,1)N≈  if θ  should happen to be exactly equal to 0θ . 
 
The relationship between nU and nW  is given by 
 

 0 0 0
ˆ ˆ

ˆ ˆ ˆn nW n n U n
b b b

θ θ θ θ θ θ θ θ− − + − −
= = = +  

 
Hence, if 0θ θ> , nW  behaves like a N(0, 1) variable plus something positive,  if 0θ θ< , 

nW  behaves like a N(0, 1) variable plus something negative, and if 0θ θ= , nW  behaves 
just like a N(0, 1) variable. 
 
The approximate test for problem 1 is therefore: “Reject 0H  if nW c≥ ”, where the critical 
value, c, is determined by the equation 

0
( )nP W cθ θ α= ≥ = .  Since 0θ θ=  implies that nW  

is approximately N(0, 1), we obtain c zα≈ . If obsw  denotes the observed value of nW from 
the data, we get the (approximate) p-value: 

0
( ) ( ) 1 ( )n obs obs obsP W w P Z w wθ θ= ≥ ≈ ≥ = −Φ , 

where ( )xΦ  is the cdf  Z ~ (0,1)N . Similarly for the other problems summarized in  
table 1: 
 
Table 1   Approximate α -level tests 
 

Problem 0H  1H  Reject 0H  
when 

Approximate  
P-value 

1 0θ θ≤  0θ θ>  nW zα≥  0
( )

( )
n obs

obs

P W w

P Z w
θ θ= ≥ ≈

≥
 

2 0θ θ≥  0θ θ<  nW zα≤ −  0

0

( )

( )
n obs

obs

P W w

P Z w
θ θ

θ θ

=

=

≤ ≈

≈ ≤
 

3 0θ θ=  0θ θ≠  2| |nW zα≥  
0
( )

( )

2 ( )

n obs

obs

obs

P W w

P Z w

P Z w

θ θ= ≥ ≈

≈ ≥ =

= ≥

 

 
 
Note that we can achieve all this based on only the estimate and standard error obtained 
from e.g., a computer output, and a calculator, as illustrated in the following example: 
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Example 0-1 
Suppose that we know from some computer output the estimate (based on say 40 
observations) of a certain parameter θ  is ˆ 1.598θ =  with standard error is SE=0.356. In 
addition we know that the theory in (0-7) apply. 
 
Then, for example, we may calculate an approximate 95% CI for θ  by 
 
 ˆ 1.96 1.598 0.698 [0.900, 2.296]SEθ ± ⋅ = ± =  
 
or a 90% CI 
 
 ˆ 1.645 1.598 0.586 [1.012, 2.184]SEθ ± ⋅ = ± =  
 
Suppose we want to test 0 : 1H θ ≤  against 1 : 1H θ > . Then 0 1θ =  above, and the test 
statistic is 
 

 
ˆ 1

nW
SE
θ −

=      

 
which gives the observed value  
 

1.598 1 1.680
0.356obsw −

= =  

 
The p-value for this is approximately 1( ) 1 (1.680) 0.046n obsP W wθ = > ≈ −Φ =  
Thus 0H  should be rejected on the 5% level but not on 1% level. 
 

Most computer-packages calculate the so called “t” as well, given by 
ˆ

ˆ( )
t

SE
θ
θ

=  (equal to 

4.489 in this case). Notice that t is the same as the test statistic nW  when 0 0θ = in the 
problems above. The computer package also usually calculates the p-value for the two-
sided hypothesis,  0 1: 0  vs  : 0̀H Hθ θ= ≠ , (under the somewhat cryptic heading like “p 
> |t|”), which corresponds to the p-value in the lower right cell of table 1. In this case the 
p-value in the output would be given as 0.000, which means that the p-value is less than 
0.001. Thus θ̂  is significantly (and highly so) different from 0 in this case. 
 
(End of example) 
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In the (most common) case where θ  is one of several unknown parameters in the model, 
exactly the same principles of inference as above for θ  apply (in the case of asymptotic 
normality). The only difference is some technicalities in connection with the 
determination of standard errors of estimators from the asymptotic covariance matrix of 
the estimators, which will be the main topic (see section 3) in these lecture notes. As a 
background for this, we need a little bit of information (not in Rice) on random vectors 
and matrices, and on the multivariate normal distribution: 
 
 

1 Random matrices 
 
Let  , 1,2, , , 1,2, ,ijY i m j n= =   be random variables (r.v.’s). The matrix 
 

 

11 12 1

21 22 2

1 2

n

n

m m mn

Y Y Y
Y Y Y

Y

Y Y Y

 
 
 =
 
 
 





   



    

 
is called a random matrix ( with a joint mn-dimensional distribution, 11, 12( , , )mnf y y y ). 
The expected value of Y is defined as 
 

(1) 

11 12 1

def
21 22 2

1 2

E( ) E( ) E( )
E( ) E( ) E( )

E( )

E( ) E( ) E( )

n

n

m m mn

Y Y Y
Y Y Y

Y

Y Y Y

 
 
 =
 
 
 





   



 

 
The expectation satisfies the following rules (which follows directly from the definition 
(1) combined with the corresponding linear properties for the expectation in the scalar 
case): 
 

i. E( ) E( )AY C A Y C+ = ⋅ +   
where A, C, are any matrices of constants with dimensions compatible 
with Y (i.e. ~A k m× , and  ~C k n× , where k is arbitrary).  

 
 

ii. E( ) E( )AYB C A Y B C+ = ⋅ ⋅ +   
where A, B, C are any constant matrices compatible with Y in dimension 
so that the product and sum is well defined.. 

 
 

iii. [ ]E( ') E( ) 'Y Y=   where  'A  denotes the transposed matrix  
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If  
1

n

Y
Y

Y

 
 =  
 
 

  is a n-dimensional random vector, it’s expectation, E( )Yµ =  (sometimes 

written, Yµ ), is therefore the vector of individual expectations,  
 

1 1E( )
E( )

E( )n n

Y
Y

Y

µ
µ

µ

   
   = = =   
   
   

   

 
Let  E ( )( )ij i i j j jiY Yσ µ µ σ = − − =   be the covariance between iY  and jY . In particular 

we have 2E ( ) var( )ii i i iY Yσ µ = − =  . The covariance matrix of Y (denoted as cov( )Y ) is 
defined as the matrix 
 

 
11 1 1 1

1 1

var( ) cov( , )

cov( , ) var( )

n n

n nn n n

Y Y Y

Y Y Y

σ σ

σ σ

   
   Σ = =   
   
   

 

     

 

 

 
 
which can be expressed as 
 

 [ ]
1 1

1 1cov( ) E ( )( ) ' E ( , , )n n

n n

Y
Y Y Y Y Y

Y

µ
µ µ µ µ

µ

− 
 = − − = − − = 
 − 

   

 

  

2
1 1 1 1 11 1(1)

2
1 1 1

( ) ( )( )
E

( )( ) ( )

n n n

n n n n n nn

Y Y Y

Y Y Y

µ µ µ σ σ

µ µ µ σ σ

 − − −  
   = = = Σ   

  − − −   

 

     

 

 

 
 
Example 1 
Suppose that  1 2, , , nY Y Y  are iid with expectation  E( )iY η=  and  2var( )iY σ= . Then the 
vector  1' ( , , )nY Y Y=   has expectation 
 

 
1

E( )
1

Y
η

η
η

   
   = =   
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and covariance matrix (since cov( , ) 0ij i jY Yσ = =  for i j≠ ): 
 

 

2

2
2 2

2

1 0 00 0
0 1 00 0

cov( )

0 0 10 0

nY I

σ
σ

σ σ

σ

   
   
   = = =
   
       









   

   





 

 
where nI  is the n-dimensional identity matrix.    (End of example) 
 
  
If  1' ( , , )nY Y Y=   is a random vector,  A a p n×  constant matrix, b a constant 1p×  
vector, we obtain from i.-iii. (and the fact that  ( ) ' ' 'BC C B=  for matrices B and C): 
 
(2) E( ) E( )AY b A Y b A bµ+ = ⋅ + = +  
 
and 
 
(3) cov( ) cov( ) ' 'AY b A Y A A A+ = ⋅ ⋅ = Σ       (i.e. a  p p×  matrix) 
 
which follows from  
 

[remembering that for matrices A,B,C we always have ( )A B C AB AC+ = +  
and ( )B C A BA CA+ = +  whenever the multiplication is well defined]  

 
[ ] [ ]

[ ] [ ]
cov( ) E ( )( ) ' E ( )( ) '

E ( )( ) ' ' E ( )( ) ' ' '

AY b AY b A b AY b A b AY A AY A

A Y Y A A Y Y A A A

µ µ µ µ

µ µ µ µ

+ = + − − + − − = − − =

= − − = ⋅ − − = Σ
 

 
In particular, if  Z is a linear combination of 1, , nY Y , i.e. 0 1 1 n nZ a a Y a Y= + + + , then Z 
can be written, 0 'Z a a Y= +  where 1' ( , , )na a a=   and 1( , , ) 'nY Y Y=  . Then (3) gives 
 
 
(4) var( ) var( ' ) 'Z a Y a a= = Σ   where   and  cov( )YΣ = . 
 

 [Proof:  Since 
1

1( , , ) 'n

n

Y
Z a a a Y

Y

 
 = = 
 
 

   can be considered a 1 1×  matrix, we must have 

that 'Z Z= , and, therefore, cov( ) var( )Z Z=   (i.e., 

[ ] 2cov( ) E ( E( ))( E( )) ' E ( E( )) var( )Z Z Z Z Z Z Z Z = − − = − =  ).  We then see that 

(4) is a special case of (3) with  'A a=   ] 
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Example 2   Ordinary least squares (OLS)         
 
To get an idea of the power of matrix notation, consider the standard multiple regression 
model with one response, Y, and p explanatory variables 
 
(5) 0 1 1i i p ip iY x x uβ β β= + + + +    for  1,2, ,i n=   
 
where, for simplicity, all ijx are considered fixed, non random quantities, and the errors, 

1 2, , , nu u u  are assumed to be iid and normally distributed with expectation, E( ) 0iu =  
and  2var( )iu σ= .  We can write (5) in matrix form as follows 
 
 

0 1 11 2 12 1 11 1 01 1 1

0 1 21 2 22 2 21 2 12 2 2

0 1 1 2 2 1

1
1

1

p p p

p p p

n n p np n np pn n n

x x x x xY u u
x x x x xY u u

Y

x x x x xY u u

β β β β β
β β β β β

β β β β β

+ + + +        
        + + + +        = = + = +        
            + + + +        

 

 

    

  

 








 

 
The three matrices on the right we denote by , , and X uβ  respectively. The model can 
now be written as 
 
(6) Y X uβ= +  
 
where X is the n p×  (so called) design matrix, β  the ( 1) 1p + ×  vector of regression 
coefficients, and u the 1n×  vector of errors. Since 
 

 

1

2

E( ) 0
E( ) 0

E( ) 0

E( ) 0n

u
u

u

u

   
   
   = = =
   
   

  

 

 

 
(where 0  denotes a vector of zeroes), we get from i. (noting that X β  is non random) 
 
(7) E( ) E( )Y X u Xβ β= + =  
 
The covariance matrix for Y becomes, since Y X uβ− = , and using example 1, 
 
(8) [ ] [ ] 2cov( ) E ( )( ) ' E uu' cov( )Y nY Y X Y X u Iβ β σΣ = = − − = = =   
 
The OLS estimator, β̂ , for β  is (by definition) obtained by minimizing the sum of 

squares 
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 ( )
2

0 1 1
1

n

i i p ip
i

Q Y x xβ β β
=

= − − − −∑   

 
with respect to β . Differentiating Q with respect to all the jβ ’s, and setting the 
derivatives equal to 0, leads to (check if you wish) the following system of equations1

ˆ
jβ

 
that the ’s must satisfy 
 
 ( ) ( )0 1 1

ˆ ˆ ˆ
i ip p ii i i

n x x Yβ β β+ + + =∑ ∑ ∑  

 ( ) ( ) ( )2
1 0 1 1 1 1

ˆ ˆ ˆ
i i i ip p i ii i i i

x x x x x Yβ β β+ + + =∑ ∑ ∑ ∑  

    
 ( ) ( ) ( )2

0 1 1
ˆ ˆ ˆ

ip ip i ip p ip ii i i i
x x x x x Yβ β β+ + + =∑ ∑ ∑ ∑  

  
Noting that the coefficients of the left side are exactly the elements in the ( 1) ( 1)p p+ × +  
matrix  'X X , and that the right side, written as a vector, simply is 'X Y , we can write 
the system more compactly as 
 
 ˆ' 'X X X Yβ =  
 
Assuming that  'X X  is non singular (which can be shown to be the case if no single x-
variable can be written exactly as a linear combination of the other x-variables2

 

, which is 
expressed by saying that there is no exact collinearity between the explanatory variables), 
we obtain the solution (the OLS estimator) 

(9) 1ˆ ( ' ) 'X X X Yβ −=  
 
It is now easy to prove that β̂  is unbiased since, from i.  and (7) 
 

(10) 
(7)  i.

1 1 1ˆE( ) E ( ' ) ' ( ' ) 'E( ) ( ' ) ' pX X X Y X X X Y X X X X Iβ β β β− − − = = = = =   
 
Writing  1( ' ) 'C X X X−= , we have ˆ CYβ = , and obtain the covariance matrix from (3) 
and (8)  

[and also using the rule that the transposed of an inverse square matrix is the 
inverse of the transposed, 1 1' ( ')A A− −  =  , which is seen by taking the transposed 

of the equation, 1A A I−⋅ = . Remember also the nAI A=  for any p n× -matrix A, 
                                                 
1 Often called the normal equations in the literature 
2 For example, if 5 1 23 2i i ix x x= + − should happen to be true for all 1, 2, ,i n=   in the data, there is 

exact collinearity between the variables 1 2 5, ,  and x x x . This would imply that 'X X  is singular. 
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and that, if c is a scalar, then c as factor can be taken outside a matrix product, 
( )A cB cAB⋅ = . ]. 

 

 ( )
(3) (8)

2 2 2 1 1ˆcov( ) cov( ) ' ' ' ( ' ) ' ( ' )Y nCY C C C I C CC X X X X X Xβ σ σ σ − −= = Σ = = =  
 
Hence 
 
(11) 2 1ˆcov( ) ( ' )X Xβ σ −=                        (End of example.) 
 
 
Exercise 2.     (Recommended (!) for obtaining a little bit of matrix training.) 

Suppose that we are in a situation with only one (non-random) explanatory variable, 
x, so that the model in (5) reduces to 

 
  0 1i i iY x uβ β= + +    for  1,2, ,i n=   
 

where 1 2, , , nu u u  are iid with ( ) 0iE u =  and  2var( )iu σ=  
 

(a) Show that the determinant, D, of 'X X is given by  
 

  ( )22 2( )i i ii i i
D n x x n x x= − = −∑ ∑ ∑  

 
(b) Find the inverse 1( ' )X X −  and conclude that 

 

  
2

2
0 2

1
ˆvar( )

( )

ii

ii

x
n

x x
β σ=

−

∑
∑

  and  
2

1 2
ˆvar( )

( )ii
x x
σβ =
−∑

 

 
 

(c)  Show also by evaluating  (9) that 
 

  1 2 2

( )ˆ
( )

i ii xY

i xi

x x Y S
x x S

β
−

= =
−

∑
∑

      where  

 

  
1

1 ( )( )
1

n

xY i i
i

S x x Y Y
n =

= − −
− ∑    and  2 2

1

1 ( )
1

n

x i
i

S x x
n =

= −
− ∑  

 
(Note that this coincides with the estimation formula used for the corresponding 
parameter in no-seminar-week exercise for week 39) 
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2 Multinormal distributions 
 
We say that the vector 1' ( , , )nX X X=   is (multi)normally distributed with expectation 

E( )Xµ = , and covariance matrix, cov( )XΣ =  (written shortly  ~ ( , )X N µ Σ ), if the 
joint pdf is given by  
 

(12) 
11 ( ) ' ( )

2
1 2

1( , , | , )
(2 ) det( )

x x

n n
f x x e

µ µ
µ

π

−− − Σ −
Σ =

Σ
    where  

1

n

x
x

x

 
 =  
 
 

  and det( )Σ  

means the determinant of  Σ . 
 
This distribution has a lot of convenient mathematical properties (see e.g. Greene, 
Econometric Analysis, chapter 3, for a summary), but here we only need the following: 
 
 
(13) 
 .  
 
 [For proof see e.g. Greene chapter 3. ] 
 
In particular, this shows that all marginal distributions are also normal. For example, the 
marginal distribution of 1 2,X X  is normal since 
 

 1

2

X
AX

X
 

= 
 

 where  
1 0 0
0 1 0

A  
=  
 





 which gives (check!) 

 

(14)  1 1 1 1 11 12

2 2 2 2 21 22

~ (E , cov ) ( , )
X X X

N N
X X X

µ σ σ
µ σ σ

         
=         

         
 ,  

 
i.e. a bivariate normal distribution 
 
 
Exercise 3. Show that the pdf  in (14) as defined in (12), reduces to the bivariate 

normal density as defined in Example F in Rice section 3.3 (both editions). [Hint: 
Introduce the correlation, ρ , between 1X  and 2X ,  12 11 22ρ σ σ σ= , implying  

If  ~ ( , )X N µ Σ  and A is a p n×  constant matrix ( p n≤ ) and b a 1p×  

constant vector, then  ( )
(2),(3)

~ E( ), cov( ) ( , ')Y AX b N Y Y N A b A Aµ= + = + Σ  
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2
12 11 22σ σ σ ρ= , and  the determinant, 1 2 2

11 22 12 11 22
2

det(cov ) (1 )
X
X

σ σ σ σ σ ρ
 

= − = − 
 

  

etc. ] 
 
 
 
Example 3  (Continuation of example 2) 
 
The error vector, u, in (6) has expectation 0  and covariance, 2

u =cov( ) nu IσΣ = . We see 
from (12) that saying that 2~ (0, )nu N Iσ  is the same as saying that 1 2, , , nu u u  are iid 
and normally distributed with expectation, E( ) 0iu =  and  2var( )iu σ= . In fact, we have 
the determinant 
 

2

2
2 2

2

0 0
0 0

det( ) det( ) det

0 0

n
u nI

σ
σ

σ σ

σ

 
 
 Σ = = =
 
  
 





   



. 

 
and the exponent in (12) reduces to 
 
 

( ) 11 2 2
2 2 2

1 1 1 1 1 1( E( )) ' ( E( )) ' ' '
2 2 2 2 2u n n ii

u u u u u I u u I u u u uσ
σ σ σ

−−  − − Σ − = − = − = − = − 
 

∑
 
Substituting in (12), shows that the joint distribution (12) reduces to the product of n one-
dimensional 2(0, )N σ -distributions as the iid statement would imply. 
 
By (13), (7), and (8) we obtain that Y is normally distributed, 

2~ (E( ), cov( )) ( , )nY N Y Y N X Iβ σ= , and, by (13) again, that 1ˆ ( ' ) 'X X X Yβ −=  is 
normally distributed 
 
 ( ) ( )2 1ˆ ˆ ˆ~ E( ), cov( ) , ( ' )N N X Xβ β β β σ −=  

 
[Note:  For completeness sake it is worth mentioning that an unbiased (and 
consistent) estimator for 2σ is given by 

 

  2 2

1

1 1ˆ ˆ ˆ ˆ'
1 1

n

i
i

u u u
n p n p

σ
=

= =
− − − − ∑  

where ˆû Y X β= −  is the vector of the so called residuals. û  is an (unbiased) 
predictor of the non-observable error vector u . This enables us to get consistent 
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(and unbiased in the case of non-random X) estimators of the covariance matrix of 
the regression estimators, β̂ .] 

 
 
(End of example.) 
 
 
 
 

3 On the asymptotic distribution for mle estimators (the multi 
parameter case) 
 
In this section we will only describe how to determine the asymptotic distribution for the 
mle estimator in case there are several unknown parameters in the model, without going 
into details of derivations and proofs. A good summary of the theory can be found in 
chapter 4 of Greene’s book, Econometric Analysis. See also Rice at the end of section 
8.5.2. 
 
Suppose that 1 2, , , nX X X  are iid with ~ ( | )i iX f x θ   (pdf), where 1 2' ( , , , )rθ θ θ θ=   is 

a r-dimensional vector of unknown parameters. Then the joint pdf  is 
1

( | )
n

i
i

f x θ
=
∏  and the 

log likelihood is 
 

 
1

( ) ln ( | )
n

i
i

l f xθ θ
=

=∑  

 
The mle estimator, θ̂ , solves r equations 
 

 
1

ˆln ( | ) 0, 1,2, ,
n

i
i j

f x j rθ
θ=

∂
= =

∂∑   

 
In order to define the r r×  Fisher information matrix that is needed in the asymptotic 
distribution of θ̂ , we introduce 
 

 
2 ln ( | )( ) E , 1,2, ,i

ij
i j

f Xm i j rθθ
θ θ

∂
= − =

∂ ∂
   

 
Then the Fisher information matrix for one observation3

 
 is defined as 

                                                 
3 I.e, one observation vector if we observe several variables per unit in the sample.  
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11 1

1

( ) ( )
( )

( ) ( )

r

r rr

m m
I

m m

θ θ
θ

θ θ

 
 =  
 
 



  



 

 
Under regularity conditions similar to the one-parameter case (see Greene for details), we 
have that the mle satisfies 
 

 1ˆ( ) (0, ( ) )
D

n
n N Iθ θ θ −

→∞
− →  

 
The definition of convergence in distribution for random vectors is similar but slightly 
more technical than the definition for the one-dimensional case, and we skip the details 
here (see Greene for a precise definition). However, the interpretation of the result is the 
same as in the one-dimensional case, i.e., that for large n,  
 

 
approximately

11ˆ ~ , ( )N I
n

θ θ θ − 
 
 

 

 
Hence we can say that θ̂  is asymptotically unbiased with asymptotic covariance 
matrix, 1(1 ) ( )n I θ − .  This matrix is unknown since θ  is unknown, but can be consistently 
estimated by replacing θ  by θ̂  (or any other consistent estimator of θ )4 θ̂. [That  is 

consistent means simply that  ˆ P

j jn
θ θ

→∞
→  for all 1,2, ,j r=  ]. A generalization of Slutski’s 

lemma to the multivariate case (details omitted), now allows us to conclude that, for large 
n  (where ôbsθ  denotes the observed value of θ̂ ) 
 
 
(15)  
 
 
 
which is the important result that you should know. Using (13) we also have  
 

(16) 
approximately

11ˆ ˆ~ , ( ) 'obsA N A A I A
n

θ θ θ − ⋅ 
 

  

 
for any constant, p r×  matrix A.   
 

                                                 
4 The continuity property of plim is still valid in the multivariate case, and the elements in 1( )I θ − are 
continuous, which follows from the continuity of the elements of ( )I θ , expressing the inverse by 

determinants. Hence, the consistency of θ̂  implies the consistency of 1ˆ( )I θ − . 

approximately
11ˆ ˆ~ , ( )obsN I

n
θ θ θ − 
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From this we get the following: Let  ( )ijk θ  denote element i,j in 1( )I θ − . Then the 

estimated asymptotic variance of ˆ
jθ  is the j-th element on the main diagonal in the 

estimated covariance matrix, i.e.  ˆ( ) /jj obsk nθ . 
 [Follows from (16). In fact, let ' (0, ,1, ,0)a =    where the 1 is in position j and 

zeroes elsewhere. Then from (16) 
 

 
approx.

1
ˆ( )1ˆ ˆ ˆ' ~ ' , ' ( ) , jj obs

j obs j

k
a N a a I a N

n n
θ

θ θ θ θ θ−
  = =        

   ] 

 

Hence, we obtain an approximate 1 α−  CI for jθ :   2
ˆ ˆ( )j jj obsz k nαθ θ±  

where 2zα  is the upper 2α -point in (0,1)N . 
 
 
Example 4.   Assume we want a CI for the transformed parameter, 1 2η θ θ= − . 
This we obtain from (16): Let ' (1, 1,0, ,0)b = −  . Then, by (16), 
 
 

1approx.

1 2 1 2 11 22 12

ˆ' ( ) 1ˆ ˆ ˆ ˆ ˆ ˆˆ ' ~ ( ' , , ( ( ) ( ) 2 ( ))obs
obs obs obs

b I bb N b N k k k
n n
θη θ θ θ θ θ θ θ θ θ

−   = − = = − + −       
 
 
which leads to the approximate 1 α−  CI for 1 2θ θ− : 
 

 1 2 2 11 22 12
1ˆ ˆ ˆ ˆ ˆ( ) ( ) 2 ( )obs obs obsz k k k
nαθ θ θ θ θ− ± + −  

 
[Note that all covariance matrices are symmetric. Hence 12 21

ˆ ˆ( ) ( )k kθ θ= . ] 
 
(End of example.) 
 
 
Example 5     (On example C in Rice section 8.5  – precipitation data) 
 
Let iX  be the amount of precipitation for rainstorm no. i,  1,2, ,i n=    ( 227n =  
observations). 
 
Model:   1 2, , , nX X X  are iid  with  ~ ( , )iX α λΓ . The joint distribution is 
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 1
1 2 1 2

1

, , , ~ ( | , ) ( )
( )

i
nn

x
n i nn

i

X X X f x x x x e
α

λαλα λ
α

−−

=

∑=
Γ∏   

 
The log likelihood is 
 
(17) ( , ) ln ( 1) ln ln ( )i ii i

l n x x nα λ α λ α λ α= + − − − Γ∑ ∑  
 
The first derivatives of l are 
 

 ln ln ln ( )ii

l n x nλ α
α α
∂ ∂

= + − Γ
∂ ∂∑  

 

 ii

l n xα
λ λ
∂

= −
∂ ∑  

 
Setting the derivatives equal to zero and solving with respect to α  and λ , gives the mle 
estimators α̂  and λ̂ .  
 

[Note. There are no explicit formulas for the solution, they must be found by 
numerical iterations. For example, Excel works well in this case by the Solver 
module: Choose two cells for the arguments α  and λ , with start values e.g. at the 
moment estimates, and then a third cell for the function (17)5

 

. Then use Solver to 
maximize (17). This can also be done in STATA by the ml-command, but slightly 
more involved.] 

Using his program, Rice obtained the mle estimates. 
 
 ˆ 0, 441α =   and  ˆ 1,96λ =  
 
We want approximate 90% CI’s for α  and λ  based on the asymptotic normal 
distribution of  α̂  and λ̂ . In order to calculate the asymptotic standard errors we need the 
so called di- and trigamma functions defined by: 
 

 Digamma function: ( ) ln ( )ψ α α
α
∂

= Γ
∂

 

 

 Trigamma function: 
2

2'( ) ln ( )ψ α α
α
∂

= Γ
∂

 

 
Both functions can be calculated in STATA (under the names digamma and trigamma). 
 

                                                 
5 In Excel you can calculate ln( ( ))αΓ  by the function GAMMALN. 
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We need the Fisher information matrix: 
 
 ln ( | , ) ln ln ( ) ( 1) lni i if X X Xα λ α λ α α λ= − Γ + − −  
 
giving 
 

 ln ln ( ) ln i
f Xλ ψ α

α
∂

= − +
∂

     and      ln
i

f Xα
λ λ

∂
= −

∂
 

 
Hence 
 

 
2

2

ln '( )f ψ α
α

∂
= −

∂
   (trigamma) 

 

 
2 2ln ln 1f f
α λ λ α λ

∂ ∂
= =

∂ ∂ ∂ ∂
 

 

 
2

2 2

ln f α
λ λ

∂
= −

∂
 

 
Hence the Fisher information matrix for one observation 
 

 

2 2

1 1'( ) '( )
( , ) E

1 1
I

ψ α ψ α
λ λα λ
α α

λ λ λ λ

   − −   
= − =   

   − −   
   

 

 
The inverse of a symmetric 2 2×  matrix is 
 

 
1

2

1a c b c
c b c aab c

− −   
=   −−   

 

 
Hence 
 

 
2

1
2

2 2

1
1 1( , ) '( ) 1 1 '( )'( ) 1'( )

I

α
α λλ λα λ αψ α λ λ ψ ααψ αψ αλ λ λ

−

 
   

= ⋅ = ⋅   −   −  
 

 

 
We obtain an estimate of this by substituting the mle, ˆ 0, 441α =   and  ˆ 1,96λ = , for α  
and λ  (skipping the index obs on the estimates) 
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 1

2

ˆˆ 0, 25903 1,151231ˆˆ( , )
ˆ ˆˆ ˆ 1,15123 13,82770'( ) 1 ˆ'( )

I
α λ

α λ
αψ α λ λ ψ α

−
   

= =    −   
 

 
Here we found  ˆ'( ) 6,128169ψ α =  from STATA by the command: 
 

 di trigamma(0.441) 
 

From the theory we have that  
approx.ˆ

~ ,ˆ N C
α α

λλ

    
    

   
, where the asymptotic covariance is 

 

 1 0,0011411 0,00507151 ˆˆ( , )
0,0050715 0,0609150

C I
n

α λ −  
= =  

 
 

 
Hence the asymptotic standard errors 
 
 ˆse( ) 0,0011411 0,03378α = =  and  ˆse( ) 0,060950 0,24681λ = =  
 
 
 
 
According to the theory we then obtain approximate 90% CI for α  and λ  
 
 ˆ ˆ1,64 se( ) 0,441 (1,64)(0,03378) [0,386, 0,496]α α± ⋅ = ± =  
 
 ˆ ˆ1,64 se( ) 1,96 (1,64)(0,247) [1,55, 2,37]λ λ± ⋅ = ± =  
 
Rice (example E, section 8.5.3)) obtains approximate 90% CI’s by the parametric 
bootstrap method6

 
: 

 :α  [0,404,  0,523] 
 
 :λ  [1,46,  2,32] 
 
The difference between the asymptotic intervals and the bootstrap intervals does not 
appear to be substantial. With as much as 227 observations it is to be expected that the 
asymptotic theory should work well. 

                                                 
6 Not in the course curriculum for 2011. 
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